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Abstract

Purpose – Laser land leveling (LLL) is a climate-smart technology that improves water use efficiency and
reduces risk in crop cultivation due to weather variability. Hence, this technology is useful for cultivating water-
intensive crops in a sustainable way. Given this background, the state government of Karnataka initiated to
promote LLL in drought-prone districts and selected Raichur district for implementation. Moreover, farmers in
this district had observeddrought situation duringmonsoon paddygrowing season in 2018. Therefore, this study
attempts to investigate the importance of LLL technology for paddy cultivation under drought conditions.
Design/methodology/approach – A primary survey with 604 farmer households had been conducted in
Raichur in 2018. Among them, 50% are adopters of LLL who have been selected purposively and rest 50% are
non-adopters who have grown paddy in the adjacent or nearest plot of the laser-leveled plot. The adoption and
causal impact of LLL has been estimated using propensity score matching, coarsened exact matching and
endogenous switching regression methods.
Findings – The result reveals a positive and significant impact of LLL on paddy yield and net returns to the
farmers. The results indicate an increment of 12 and 16% in rice yield and net income, respectively, for LLL
adopters in comparison to the non-adopters of LLL.
Research limitations/implications –Themajor limitation of the study is that it does not adopt the method
of experimental study due to certain limitations; hence, the authors employed a quasi-experimental method to
look at the possible impact of adoption of LL.
Originality/value – There have been various agronomic studies focusing on the ex-ante assessment of the
LLL. This study is an ex-post assessment of the technology on the crop yield and farmers’ income in a dry semi-
arid region of India, which, according to the authors, is the first in this approach.
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1. Introduction
Semi-arid regions around the world are hotspots of poverty, malnutrition and degradation of
environmental resources. It covers 35% of agricultural land in India spread across the states
of Karnataka, Telangana, Maharashtra, Tamil Nadu, Madhya Pradesh, Gujarat, Rajasthan,
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Punjab and Haryana (Ramarao et al., 2019). Crop productivity in these regions is only one-
fifth to a half of the potential yield (Wani et al., 2012). Extremes of heat and cold, droughts and
floods, and various other forms of extreme climatic events are additional challenges to
agricultural productivity, farm incomes and food security in this region (Battisti and Naylor,
2009). There are various studies that suggest agricultural production is significantly affected
due to abrupt increase in temperature (Lobell et al., 2012; Aggarwal, 2008), changes in
monsoon patterns (Prasanna, 2014; Mall et al., 2006) and variations in the frequency and
intensity of extreme climatic events like floods and droughts (Brida and Owiyo, 2013; Singh
et al., 2013). A study by the Acevedo et al. (2018) reveals that for emerging market economies,
a 18C increase in temperature would reduce agricultural growth by 1.7%, while a 100 mm
reduction in rainwould reduce growth by 0.35%. Current coping strategies are not efficient to
cope up with the future climate changes due to the variability in biotic and abiotic conditions,
which is expected to rise in future (Berger and Troost, 2014).

According to Wani et al. (2012), the potential of dryland farms can be unlocked by
employing improved technologies in a sustainablemanner. Research has stated that adoption
of agricultural technology and innovations is essential for ensuring farming system
transformations, improvement in agricultural productivity and food security, accelerating
rural economic growth and eradicating rural poverty and vulnerabilities (Kumar et al., 2020,
2021; Mottaleb, 2018). Ghimire et al. (2015) stressed that the adoption of new techniques should
occur through an integrated approach to increase agricultural productivity. According to these
researchers, innovative and new agricultural technology helps improve the welfare of poor
people directly by increasing their incomes and indirectly by raising the employment andwage
rates of landless laborers and by minimizing price fluctuations. Climate-smart agriculture
(CSA) is an approach that calls for adoption of agricultural technologies that increase crop
productivity, enhance farmers’ net income, reduce risk due to weather variability and reduce
the water, energy and emissions footprints of agriculture (Lipper and Zilberman, 2018; Sousa
et al., 2018; Arslan et al., 2015; Lipper et al., 2014; FAO, 2012).

Laser land leveling (LLL) is one of the climate-smart technologies that helps in improving
crop establishment and crop maturity, raises cultivable land area by 3–5 %, increases water
application efficiency potential up to 50%, increases cropping intensity up to 40%, increases
crop yield (wheat – 15%, sugarcane – 42%, rice – 61% and cotton – 66%), controls emergence
of salt patches in the soil, saves irrigation water by approximately 35–40%, minimizes weed
problems and improves weed control efficiency (Kanannavar et al., 2020; Aggarwal et al.,
2010; Jat et al., 2006; Rajput et al., 2004).

Premised on this wisdom, the state government of Karnataka in India had implemented
“Bhoosamrudhi programme” in the year 2013 to promote improved and innovative
technologies for agricultural activities in the state Karnataka. Initially four districts –
Chikkamagaluru, Raichur, Vijayapura and Tumkur, were selected for the pilot program,
and LLL was one of the priority technologies first demonstrated in paddy-based cropping
system in the Raichur district and then gradually spread across other parts of the state.
Providing subsidy to the customs hiring center for purchasing LLLmachines and subsidy to
the farmers on application of this machine weremajor interventionsmade by the government
of Karnataka in collaboration with state agriculture universities and consultative group of
international agricultural research (CGIAR) centers (Wani et al., 2015). Although, the
demonstration of LLL technology in agriculture fields of Karnataka was started with
procurement of laser-guided land leveler from Spectra Precision Pvt., Ltd, New Delhi, in the
year 2008–2009 by University of Agriculture Science, Raichur, but the Bhoosamrudhi
program was the first ever program backed by the state government in Karnataka to
demonstrate improved technologies, including LLL (Kanannavar et al., 2020). However, the
Bhoosamrudhi program in the above-mentioned four districts was ended in the year 2016, but
many questions unfolded. First, are the farmers in these districts still adopting the LLL
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technology beyond the demonstrations plot? Secondly, the state Karnataka is a drought-
prone state, so whether this LLL technologies are helping farmers to cope with the variability
in weather like long dry spell or seasonal drought?

There are only few studies available on Karnataka that reveal the impact of LLL
technology on crop yield, input use and farmers’ income (Kanannavar et al., 2020; Chilur et al.,
2016; Wani et al., 2015). Moreover, the available studies have followed either an engineering
approach or an agronomist approach to assess impact of LLLbased on the demonstrated plot.
Apart from these studies, there are studies that have analyzed the effectiveness of the LLL
technology through the lenses of climate change adaptation and resource use efficiency in
agriculture (Khatri-Chettri et al., 2016; Aryal et al., 2015; Sapkota et al., 2015; Taneja et al.,
2014). Although these studies have selected a large number of sample farmers to assess
farmers’ perception and experience in adoption of the LLL technology, the study area was
limitedwithin the Indo-Gangetic Plains in India. Again, the effectiveness of LLL varies across
the agro-climatic conditions prevailing in different regions (Jat et al., 2006). Therefore, the
purpose of this study is to conduct a systematic investigation on the trend in adoption of LLL
in the study area, factors influencing adoption of LLL and assess its effectiveness in farmers’
well-being. Moreover, this study was conducted in the year 2018–2019 when farmers in the
study area were affected due to drought. Hence, understanding the effectiveness of LLL to
cope with the drought situation for crop cultivation in the study area is also an important
aspect of this study. Unlike existing studies that use traditional “before and after approach”
for impact assessment, this study has followed advanced econometric methods (quasi-
experiment) like propensity score matching (PSM), coarsened exact matching (CEM) and
endogenous switching regression (ESR) to investigate impact of LLL on crop yield and net
return of the farmers. Thus, this study will add to knowledge on impact of LLL on farmers’
well-being by providing evidence beyond the experimental plots in the study area. This study
also generates evidence on effectiveness of LLL in the semi-arid region in India, which can
motivate policy makers of other states in India that belongs to the semi-arid region to initiate
pilot projects on upscaling of LLL in those states. Global research and donor community to
scale up research and development in the semi-arid region to develop an effective business
model for upscaling of climate-smart technologies like LLL to adapt with the progressive
climate change impact on Indian agriculture.

Following this introductory section, the rest of this paper is organized as follows. Section 2
illustrates the study area and sampling approach adopted for the study. Section 3 emphasizes
on the conceptual and econometric framework implemented in the study. Section 4 provides
detailed results from the study, followed by discussions in Section 5. Finally, Section 6
concludes this paper with key policy implications.

2. Data and sampling
2.1 Study area
The state of Karnataka in India is selected for this study.As per the recent Periodic Labor Force
Survey, 2018–2019, agriculture employs 41% (8.4 million workers) of the Karnataka’s
workforce, comprising 62.1% as cultivators and 37.6% as agricultural workers. This state has
largest rainfed area in the country after Rajasthan, and small and marginal farmers with
landholdings less than 2 ha produce almost half of the food grown in the state (GoK, 2011). The
state has large portions of agricultural land exposed to vagaries ofmonsoonwith extreme agro-
climatic and resource constraints (Bhende, 2013). However, poor soil, water and crop
management practices are depleting soil nutrients and degrading the land, which is resulting in
low crop productivity (Bhattacharyya et al., 2015). In 2013, the government of Karnataka
initiated the Bhoosamrudhi program to promote innovative technologies in the agriculture
sector, with the objective of increasing the crop production by 20%, enhancing farmers’ income
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by25%and reducingvulnerability due to climate variability (Wani et al., 2015).A consortiumof
CGIAR institutions led by the International Crops Research Institute for the Semi-Arid Tropics
(ICRISAT), agriculture universities and Indian Council of Agricultural Research (ICAR)
institutions was formed to conduct pilot tests of the technologies across selected districts.
Several improved and innovative technologies have been tested in the pilot areas, and several
trainings have been conducted to motivate farmers to adopt those technologies. LLL was one
among these improved technologies tested among the paddy-growing farmers in the Raichur
district of Karnataka. The location of the study site is presented in Figure 1.

The Raichur district is in the northeastern dry zone of the Karnataka state. Raichur has
about 4,75,000 ha of net sown area, and 5,66,000 ha of gross cropped area with a cropping
intensity of 111.9%. Paddy occupies almost 25% of the gross cropped area. About 70% of the
gross cropped area is rainfed. Canals are the most widely used source of irrigation water
(almost 72%of the total irrigated area), followed by openwells (8.22%) and borewells (7.57%)
(Directorate of Economics and Statistics, 2019). The district has been witnessing erratic and
declining rainfall since 2014, and the Karnataka State Natural Disaster Monitoring Center
(KSNDMC) declared that Raichur was affected by severe drought in 2018. Moreover, the
annual average rainfall in this district was an average 60% lower than the normal rainfall
between the year 2011 and 2018 (Figure 2). Therefore, agriculture in the study area is highly
vulnerable due to weather variability, and if no interventions take place, progressive changes
in temperature and precipitation will threaten the agricultural production and farmers’
livelihood in the long run.

Figure 1.
Study site in
Karnataka (Raichur)
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2.2 Data sampling
A primary survey of farmer households was conducted in the Raichur district of Karnataka,
between November 2018 and March 2019, immediately after paddy harvest. Responses were
received from 604 paddy farmers, of whom 275 were non-adopters of LLL and 329 were
adopter farmers. Adopter farmers included those who owned an LLLmachine and those who
rented an LLL machine to level their land. The LLL technology adopters were selected
through the snowball samplingmethod. In this process, we have first identified the owners of
the LLL machine in the districts in consultation with experts from the State Agriculture
University, Raichur, and scientists from the International Maize and Wheat Improvement
Center (CIMMYT) and ICRISAT. After identifying the owners of the LLL machines, we had
traced the users of LLL technology in the selected districts, and thus, we had selected adopter
farmers for this study. Non-adopters were selected based on being neighboring farmers with
land near the laser-leveled plot and who cultivated paddy in the same season. Data were
collected on general and geographical characteristics of the respondents, whether they owned
or rented LLL machines, the area under crop cultivation, crop yield, farm income, cost of
cultivation, asset holdings, household sources of income, household characteristics andmajor
constraints that farmers face in adopting LLL. The details of sample size and their
distribution with respect to adopters and non-adopters are presented in Table 1.

2.3 Year-wise adoption of laser land leveling
Figure 3 shows the year-wise adoption of LLL among the surveyed farmers. The
Bhoosamrudhi project was initiated in the district as a pilot program between 2013 and
2016, but its efficacy is still prevalent. We see a spike in the number of adopters between 2016
and 2018. We observe that maximum adoption of LLL technology was reported in the year
2018 (survey year). Therefore, this indicates that LLL technology has proved to be a boon to
the farmers in a semi-arid drought-prone region because of its potential yield and income
benefits.
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3. Empirical framework
In this study, we have estimated the impact of the LLL technology on crop productivity [1] and
net income [2] of the farmers in the study area. Unlike existing studies that use traditional
“before and after approach” for impact assessment, this study has followed advanced
econometric methods (quasi-experiment) like PSM, CEM and ESR to investigate impact of LLL
on crop yield and net return of the farmers. Details about these methods are described below.

3.1 Propensity score matching
Under the PSM method, households are ranked according to their own behavior toward
technology adoption to ensure that technology effects are evaluated among groups of farmers
possessing similar characteristics (Mendola, 2007). The main purpose of using this method is
to find a group of farmers who did not adopt the technology (control) like the farmers who
adopted the technology (treatment) in all relevant observable characteristics such as land
size, household size, education, assets, constraints, and adult male member engaged in
farming. PSM also helps to generate the average treatment effect for the treatment
group (ATT).

Administrative block
Adopters Non-adopters Total

Number % Number % Number %

Raichur 88 55.0 72 45.0 160 26.5
Devdurga 138 82.1 30 17.9 168 27.8
Manvi 39 20.9 148 79.1 187 30.9
Sindhanur 64 71.9 25 28.1 89 14.7
Total (Raichur district) 329 54.5 275 45.5 604 100
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Table 1.
Sample selected for the
study, by
administrative blocks

Figure 3.
Year-wise adoption of
laser land levelers
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There are several methods that can be used to match the propensity scores of the
treatment and control groups, namely, nearest neighborhood, kernel, radius matching and
bootstrapping. In general, these methods should yield the same results, but in practice, there
are trade-offs in terms of bias and efficiency with each method (Caliendo and Kopeining,
2008). This study used the nearest neighborhood matching technique to find the “neighbors”
value (propensity score) of control plots that was closest to the values of treated plots. The
purpose here is to balance the observed distribution of covariates across the treatment and
control groups. The balancing test helps to ascertain whether the differences in covariates in
the two groups of the matched sample have been eliminated or not. If the differences between
the two groups are eliminated, then the matched comparison group can be considered a
plausible counterfactual (Akhter and Awudu, 2010). The most frequently used measure of
whether balancing has been successful is the standardized mean difference (bias); this should
be minimal between treatment and control groups. In principle, after matching, there should
be no systematic differences in the distribution of covariates between the groups (Rosenbaum
and Rubin, 1985). PSM estimators do not account for selection on unobservable factors.
Hence, it is accepted that such selection bias has little impact on the results.

ATT is calculated as follows. Let “Di” be an indicator of whether a farmer is an adopter or a
non-adopter of the technology. The potential productivity outcome of being an adopter,
represented by I, for each farmer is defined as (Di). The ATT is computed as:

ΔATT ¼ EðΔjDi ¼ 1Þ ¼ E½ðτð1ÞjDi ¼ 1� � E½ðτð0ÞjDi ¼ 1� (1)

whereΔATT is the average treatment effect on the treated plot,E½ðτð1ÞjDi ¼ 1� is the expected
outcome variable of a beneficiary farmer and E½ðτð0ÞjDi ¼ 1� is the expected outcome
variable of an adopter farmer if they are not the user of LLL machine. The PSM technique
involves imposition of conditional independence and common support assumptions for
identification. If the above two assumptions are fulfilled, then the PSM estimator for ATT is
given as follows:

Δ
PSM

ATT
¼ EpðXÞjDi¼1fE½ðτð1ÞjDi ¼ 1; pðXÞ� � E½ðτð0ÞjDi ¼ 1; pðXÞ�g (2)

3.2 Coarsened exact matching
CEM is an alternative technique to PSM, belonging to the monotonic imbalance bounding
(MIB) group developed by Iacus et al. (2011). CEMworks in sample distributions and requires
no assumption about the data generation process, except for the usual ignorability
assumptions. This method assures that the imbalance between the matched and unmatched
groups will not be greater than the ex ante choice stated by the user. Iacus et al. (2011) have
shown that CEM is better than other commonly used matching methods at reducing
imbalance, model dependence, estimation error bias, variance and mean square error. The
mechanism behind CEM is to coarsen each variable by recoding so that largely identical
values are grouped and assigned the same value; this is followed by application of the exact
matching principle to identify matches and to remove unmatched units. Finally, the
coarsened data are withdrawn, and original values of the matched data are retained.

After coarsening, CEM creates a set of strata, say, sV S, eachwith few coarsened values of
X. Consider a sample of size n (n ≤ N), which contains units drawn from population N. Let Ti

denote an indicator variable for unit i, which takes value 1 if the ith unit belongs to the
treatment group and takes value 0 if the ith unit belongs to the control group. The observed
outcome variable Yi5Ti Yi (1)þ (1-Ti)Yi (0) whereYi (0) is the outcome for the non-adopters
of LLL, and Yi (1) is the outcome for the adopters of LLL. To estimate the impact of the
technology intervention on a selected group of households, the standard ignorability
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assumption is that, conditional on X, the treatment variable is independent of the potential
outcomes, and that every treated unit receives the same treatment. A fixed causal effect is a
function of potential outcome defined as Yi (1) – Yi (0).

The estimates for the causal effects on outcome variables can be defined as:

SATT ¼ 1

nT

X
iετ

TEi (3)

where TEi5 Yi (1) – Yi (0) j Xi and nT5 total number of treated units in the original sample.
This estimate is valid only when all treated units are matched. However, when all the units do
not match, as is the case of the current study, SATT changes to LSATT or local sample
average treatment for all treated plots, which is estimated by:

LSATT ¼ 1

mT

X
iεTm

TEi (4)

where mT 5 number of matched treated units and Tm 5 subset of matched treated units.

3.3 Endogenous switching regression
In some cases, the standard econometric model of using pooled sample of treatment and
control groups may be inappropriate since it assumes that the set of covariates has the same
impact on both the groups. To counter this issue, this study employed ESR to check for
robustness and account for selection bias present in the former model. In the ESR model, we
have considered only those observations that were under common support region in the PSM
method and dropped “off-support” sample from our analysis for robust estimation in the ESR
model. ESR addresses the endogeneity problem by estimating selection and outcome
equations simultaneously using the full information maximum likelihood method (Kumar
et al., 2018; Wossen et al., 2017; Ma and Abdulai, 2016; Lokshin and Sajaia, 2004). The ESR
model has two main parts, a probit model to identify the determinants of adoption of
technology and two functions of outcome variable, one for adopter and second for non-
adopter. The selection equation for the beneficiary household can be stated as:

Z *
i ¼ Xiαþ δi with Mi ¼

(
1 if Z *

i > 0

0; otherwise
(5)

where Xi is the vector of explanatory variables comprising sociodemographic details of the
households. The variables included in the vector are size of agricultural landholding,
household size, crop insurance, educational qualifications, visits made to and from Raita
Samparka Kendra (RSK), number of adult male members engaged in farming activity,
constraints faced by farmers in adopting LLL (machine supply, training, rent of machine and
irrigation facility) and asset ownership (livestock, tractor and pump sets). The relationship
between the vector of independent variables X and outcome variableY can be represented as
Y5 f(X). The household will adopt LLL (Zi5 1) when Y > 0, where Y stands for the outcome
generated from the adopters of LLL vis-�a-vis non-adopters of LLL.

Now, the outcome equation conditional on treatment can be stated as:

Regime 1 : Y1i ¼ X1i þ m1i if Zi ¼ 1 (6)

Regime 2 : Y2i ¼ X2i þ m2i if Zi ¼ 0 (7)

whereYi is the resultant variable (output from LLL adopters) and the error terms (m1i and m2i)
are assumed to have a tri-variate normal distribution with zero mean and covariance. If the
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estimated covariance between δ and m values (ρ1 and ρ2, respectively) are statistically
significant, then adopter households and income are positively correlated. Using this
approach, we found signs of endogenous switching and rejected the null hypothesis that
sample selection bias was absent. Maddala and Nelson (1975) defined this model as the
switching regression model with endogenous switching, which can be used to estimate ATT
and ATU (average treatment effects on control households).

The ESR model involves application of an instrumental variable (IV) that directly affects
the endogenous variable without having a direct impact on the outcome variable.

In addition to the above ESR model, we also calculated the household’s conditional
expectation for income in four different cases:

EðY1ijZi ¼ 1Þ ¼
hX

Zi¼1
ðX1iβ1 þ σ1nγ1iÞ

i.
N1 (8)

EðY2ijZi ¼ 0Þ ¼
hX

Zi¼0
ðX2iβ2 þ σ2nγ2iÞ

i.
N0 (9)

EðY1ijZi ¼ 1Þ ¼
hX

Zi¼1
ðX1iβ2 þ σ2nγ1iÞ

i.
N1 (10)

EðY1ijZi ¼ 0Þ ¼
hX

Zi¼0
ðX2iβ1 þ σ1nγ2iÞ

i.
N0 (11)

where N1 and N0 are the number of observations with Zi 5 1 and Zi 5 0, respectively. The
above equations are illustrated in Table 2. Cases (a) and (b) depict the actual expectation
observed from the sample, while Cases (c) and (d) represent counterfactual expected results.
However, following the approach of Heckman et al. (2001), in calculating the effect of
treatment “laser land leveler” on adopter households (TT), the study used the difference
between Cases (a) and (c) to calculate the impact of use of LLL on the outcome variable.
Likewise, the difference between Cases (b) and (d) indicates the impact of LLL on households
that did not adopt LLL (TU).

The study also calculated the effect of base heterogeneity for the group of households that
adopted LLL as the difference between Cases (a) and (d), and for the group of households that
did not adopt LLL as the difference between Cases (c) and (b) (Cater and Milon, 2005). Lastly,
the study also computed the transitional heterogeneity (TH), which highlights whether the
effect of adoption of laser land levelers on the outcome variable is larger or smaller for
households who adopted LLL in comparison to those households that did not adopt LLL, i.e.
difference between TT and TU.

3.3.1 Instrument variable selection. IVs are used for controlling the confounding and
measurement error in observational studies. Just like propensity scores, IVs can be used to
adjust for both observed and unobserved confounding effects. There are two main principles
for selecting an IV, first, it causes variation in the treatment variable and secondly, it does not
directly affect the dependent variable but only indirectly through the explanatory variable.
There are two main issues that may arise in the application of IVs, first, we may choose a bad

TH
Decision stage

Treatment effectsTreatment Control

Treatment E(Y1ijZi 5 1) E(Y2ijZi 5 1) TT
Control E(Y1ijZi 5 0) E(Y2ijZi 5 0) TU
Heterogeneity effects BH1 BH2 TH

Source(s): Cater and Milon (2005)

Table 2.
Decision stage
treatment and

heterogeneity effects
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instrument which might result from the IV being correlated with the omitted variables or
second, bias may arise if the instruments are weakly correlated with the explanatory
variables (Angrist and Krueger, 2001). In this study, farmers having access to canal irrigation
have been taken as the IV because canal irrigation is the main source of irrigation for all the
farmers in the district. Canal irrigation accessibility has an indirect impact for LLL users
because it is assumed to be a water-saving technique, and we can see the negative coefficient
of Rho values in Table A3. This variable affects our outcome variables, yield and net farm
income, indirectly through the explanatory variables. Further, we have done the validation
test of selection instrument. The details are provided in Table A5 in Appendix. A variable is a
valid selection instrument if it affects the LLL users but does not have a significant
association with the outcome variables of the non-LLL users.

4. Results
4.1 Descriptive statistics
Table 3 provides the summary statistics of the sample farmers for the key variables used in
the empirical analysis. Adopters had significantly larger landholdings than non-adopters,

Variable
Adopter
(N 5 329)

Non-adopter
(N 5 275)

Difference in means
(t-test)

Total
(N 5 604)

Sociodemographic characteristics
Agriculture land owned
(ha)

10.53 5.44 5.09** 8.21

Household size (no.) 6.04 6.38 �0.34 6.2
Adult males in farming
(no.)

1.76 1.92 �0.15* 1.84

Crop loan 0.66 0.69 �0.03 0.67
Visits made to and from
RSK

0.26 0.16 0.09*** 0.21

Education
Illiterate 0.23 0.37 �0.15*** 0.29
Primary 0.38 0.25 0.13*** 0.33
Secondary 0.22 0.21 0.02 0.22
Higher secondary and
above

0.16 0.16 �0.002 0.16

Asset ownership
Livestock 0.65 0.55 0.11*** 0.61
Pump sets 0.57 0.37 0.20*** 0.48
Tractors 0.54 0.40 0.14*** 0.48

Constraints in adopting LLL
Training 0.83 0.47 0.36*** 0.66
Machine supply 0.72 0.43 0.29*** 0.59
Irrigation facility 0.48 0.29 0.18*** 0.39
Rent of machine 0.91 0.55 0.37*** 0.75
Weeding problem 0.09 0.07 0.03 0.08

Other details
Total revenue (INR) 58,117.23 51,661.7 6,455.53*** 55,178.04
Total cost (INR) 22,466.83 21,060.35 1,406.48 21,826.46
Net income (INR) 38,612.36 32,812.12 5,800.24*** 35,971.52
Yield (tons/ha) 4.81 4.29 0.51*** 4.57

Source(s): Authors’ calculation from IFPRI-GoK survey, 2018–2019; ***p < 0.01, **p < 0.05, *p < 0.1

Table 3.
Descriptive statistics of
important variables
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10.53 ha compared to 5.44 ha per farmer household. Adopter farmers had slightly fewer adult
male members working in agriculture (1.76) than did non-adopters (1.92). Adopters had
significantly more interactions with RSKs than non-adopters. Significantly fewer adopters
were illiterate, and significantly more had at least a primary school-level education than the
case for non-adopters, although there is no difference in the proportions with higher levels of
education. Adopters were significantly more likely to own assets such as livestock, pumps
and tractors thanwere non-adopters. A significantly greater proportion of adopters identified
constraints to adoption of LLL, including rent of the machine, training, machine supply and
availability of irrigation. Adopters had significantly higher average yields than non-adopters
(4.8 tons/ha compared with 4.29 tons/ha). Adopters also reported significantly higher net
income than non-adopters (INR38,612.4/ha, compared with INR32,812.12/ha).

Although the adopters of LLL technology have paddy yield 10% higher than that of non-
adopters, the non-adopters still achieved an average yield of around 3 tons/ha even in the
drought year. This gives rise to two research questions, first, does it make sense to invest an
additional INR1,400 per ha (Table 3) to adopt LLL to increase average yield by only 0.5 tons/
ha?, and second, although LLL has limited impact on absolute yield advantage, does it have a
significant impact on the distribution of yield between adopters and non-adopters? To
answer the above two questions, one must conduct a detailed analysis of the farmers’
household data and their impact on distribution. The study focusses on two sets of
assessment, first, we have analyzed farmers’ perception of the climate extreme events and
effectiveness of LLL to adapt with that event, and secondly, we have plotted distribution of
yield for both adopters and non-adopters to understand the impact of LLL on yield
distribution.

Table 4 presents perceptions about climate change and its harmful impact from the
adopters and non-adopters of LLL and adopted farmers’ views on the benefits of adoption of
LLL. As observed from this table, the most extreme climatic event observed by the farmers in
the study area is drought. Almost 90% of the sample farmers reported drought as a severe
climatic event in the study area. Approximately 90% of both adopters and non-adopters
reported crop loss in the past five years. Further questioning of LLL adopters on cost of
cultivation and crop loss due to climate change found that 92% observed reduction in cost of
cultivation of paddy, and 64% thought that LLL had reduced crop loss due to climate
variability. When adopters were asked to rate LLL in terms of its usefulness, 97% stated that

Questions
Adopters of
LLL (329)

Non-adopters of
LLL (275)

Total
(604)

Difference in
means

Extreme climatic event witnessed by
the respondent (drought)

96.05 89.82 93.21 6.23***

Did you observe crop loss in the past
five years? (Yes)

89.67 89.45 89.57 0.21

Only adopters will answer the following questions

Yes No Total
Difference in

mean

Did you observe that adoption of LLL reduces cost of cultivation? 92.71 0.36 50.66 92.34***
Do you think adoption of LLL reduces crop loss due to climatic
variability?

64.44 0.36 35.26 64.07***

Note(s):% values are shown in the parenthesis. *** p < 0.01
Source(s): Authors’ calculation from IFPRI-GoK survey, 2018–2019

Table 4.
Farmers’ observations
on climate change and

LLL adoption
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it is useful to reduce cost of cultivation, and 95% identified its usefulness in reducing crop loss
due to climate change (Figures 4 and 5).

Therefore, based on the above assessment from the farmers, we can argue that Raichur is
highly vulnerable to drought, and sample farmers (both adopters and non-adopters) believe
that LLL is an effective technology to adapt during frequent climate extreme events. To
validate farmers’ perception, we use a statistical tool to understand the deviation between the
yield reported by the sample farmers from the average district yield of past three years (2015,
2016 and 2017). Kernel density function is used to portray the difference and is presented in
Figure 6. We can see that a graph for non-adopters is inclined more leftward from the mean
line than the graph of adopters of LLL. This clearly suggests that LLL adopters have a higher
difference in yield than non-adopters, indicating a gainful endeavor for the adopters. The
skewness coefficient for adopters’ computes to be�0.12, while for non-adopters, it turns out
to be �0.17, suggesting more negative skewness for non-adopters than adopters of LLL.
Therefore, the yield gap is less for adopters of LLL than for non-adopters, indicating that LLL
helps reduce yield declines of paddy caused by drought.

To delve further into the unobservable factors affecting the treatment and control groups,
we build counterfactuals to minimize the effect of such factors on the crop yield and net
income of the farmers by applying matching techniques to control for selection bias and
unforeseen factors between the adopters and non-adopters of LLL.

4.2 Impact results
PSM and CEM results are displayed in Table 5 to witness the impact of adoption of LLL on
crop yield and net farm income of the adopters over non-adopters. Estimates from PSM show
that the net income of the farmers who adopt LLL increases by INR3,725 as compared to the
non-adopters of LLL. Further, CEM results show a rise of INR4,834 in net income of LLL
adopters in comparison to non-LLL adopters. Similarly, for crop yield, PSM and CEM results
exhibit an increase of 0.33 and 0.68 tons/ha, respectively, for LLL adopters in comparison to
non-LLL adopters. These results align with the results obtained by Kumar et al. (2020, 2021)
for India. The detailed results for PSM and CEM are attached in the Appendix (Tables A1
and A2).

The ESR method is undertaken to account for selection bias and to check for robustness.
Table 6 presents the treatment and heterogeneity effect results obtained from the ESRmodel.

Highly useful

77%

Moderately 

useful

20%

Not very useful

3%

How would you rank LLL in terms of reduction of cost of cultivation? 

Source(s): Authors’ creation from IFPRI – GoK survey, 2018-19

Figure 4.
Ranking LLL in terms
of reduction in cost of
cultivation by adopters
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Highly useful

59%

Moderately 

useful

36%

Not very useful

5%

How would you rank LLL in terms of reducing crop loss due

 to climatic variability? 

Source(s): Authors’ creation from IFPRI – GoK survey, 2018-19
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Deviation of yield between adopters and non-adopters of LLL

Outcome variable PSM CEM

Net income (INR) 3,725.35*** (1,519.91) 4,834.57*** (2,149.54)
Yield (tons/h) 0.33** (0.09) 0.685*** (0.12)

Source(s): Authors’ estimation based on IFPRI-GoK Survey, 2018–2019; robust standard errors are given in
parentheses; ***p < 0.01, **p < 0.05

Figure 5.
Ranking LLL in terms
of reducing crop loss

by adopters

Figure 6.
Comparison of

deviation in yield
between adopters and
non-adopters of LLL

Table 5.
Estimates from PSM
and CEM for yield
(tons/ha) and net
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We can observe that the yield of LLL-adopted farmers computes to be 4.76 tons/ha, while for
the non-LLL adopted farmers, the yield turns out to be only 4.07 tons/ha. Therefore, treatment
effect on treated (TT) is equal to 0.69 tons/ha, signifying an advantage to LLL-adopted
farmers. However, more interesting results are for non-LLL adopted farmers who have an
average yield of 4.24 tons/ha but would have had an average yield of 5.85 tons/ha if they
would have adopted laser land leveler. The difference of 1.60 tons/ha in the yield between the
two situations for the non-adopted farmers define the treatment effect on untreated (TU).
Heterogeneity effect (TH) comes out to be 0.91 tons/ha, implying that non-LLL farmers will
gain if they adopt the LLL technology.

Similarly, LLL adopted farmers have an average net income of INR37,753 while the
average net income would have reduced to INR26,375 if they were non-adopters of the LLL
technology. Hence, TT calculates to be INR11,377. This signifies that farmers adopting LLL
are more benefitted as compared to those who are non-adopters of LLL. Non-adopters of
LLL technology have an average net income of INR30,685 but would eventually rise to
INR53,450 if they adopt LLL technology. Here, TU is equal to INR22,764, and the heterogeneity
effect computes to be INR11,386, implying a positive outcome for non-LLL farmers. All the
results for crop yield and net income are statistically significant at 99% level of confidence
interval. The results, thus, obtained in this study are in line with the results reported by Aryal
et al. (2015) for Punjab and Haryana, and Ali et al. (2018) for Pakistan Punjab. Regime-wise
equations for both outcome variables are presented in Tables A3 and A4 in the Appendix.

5. Discussion
LLL is a climate-smart agricultural technology that helps in cost minimization by improving
resource efficiency. It also helps in building resilience to the agricultural systems that are
vulnerable to different climatic vagaries. LLL technology was demonstrated at a few selected
farmer fields as a part of the pilot project introduced in the study area between 2013 and 2016.
In addition to that, several trainings were organized, and a subsidy of INR100,000 on the
purchase of LLLmachine was given to the farmers. From our primary survey, we have found
that the number of adopters increased tremendously after 2016, maximum being in 2018,
highlighting the utility of the technology. During our survey, we also observed that the
adoption of LLL is greater among the farmers living in downstream areas of the canal
command area as compared to those living in upstream areas. The uncertainty in rainfall
causes disruption in canal water supply for irrigation, and farmers cultivating paddy in the
downstream of canal command area face severe water scarcity due to the interrupted supply
of water. Therefore, the water scarcity led farmers to adopt LLL; as a result, we observe low
variability in the yield across the sample farmers (Figure 5). Moreover, farmers in the study
area have observed saving water without losing the yield. All this led to a rise in adopters of

Treatment Control Treatment effects

Yield (tons/ha)
Treatment 4.76 4.07 TT 5 0.69***
Control 5.85 4.24 TU 5 1.60***
Heterogeneity effect BH1 5 �1.08 BH2 5 �0.17 TH 5 �0.91***

Net income (INR)
Treatment 37,753.36 26,375.8 TT 5 11,377.56***
Control 53,449.77 30,685.75 TU 5 22,764.02***
Heterogeneity effect BH1 5 �15,696.41 BH2 5 �4,309.96 TH 5 �11,386.46***

Source(s): Authors’ estimation based on IFPRI-GoK Survey, 2018–2019; ***p < 0.01

Table 6.
Treatment and
heterogeneity effect
from the ESR
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LLL in the study area. LLL has also demonstrated to be a potential risk minimizer. The
average yield of adopters was reported to be higher than that of non-adopters. This is also
visible from Figure 6, which depicts higher negative deviation for non-adopters as compared
to the adopters. The skewness coefficient is reported to be higher for non-adopters as
compared to adopters. Therefore, it can be said that paddy cultivation under LLL technology
has become less risky in drought-prone regions of India.

The results based on our study substantiate that LLL has been helpful in improving the
productivity of paddy and increasing the monetary welfare of the farmers. Land possessed
by the farmers indicate a positive variation between the adopter and non-adopter farmers.
The average size of landholdings by the technology adopted farmers is 10.53 ha and for non-
adopted farmers is 5.44 ha. This implies large farmers are the early adopters of LLL in the
study area, and extension institutions need to be strengthened to sensitize relatively small
farmers to adopt LLL technology. Farmer’s education has played an important role in the
adoption of LLL technology in the study area. Moreover, a special technical skill is required to
operate an LLLmachine to level the land. Therefore, educated farmers need to be encouraged
to come forward to adopt LLL machine and the practice.

PSMandCEMtechniques havebeen used tomatch adopters andnon-adopters to find out the
impact of technology intervention on farmers’ income and crop yield. Here, we have observed
that technology adoption has a positive and significant impact on both the outcome variables.
The PSM results are generated using the logit regression and nearest neighborhood algorithm.
Under logit regression, the main factors affecting the adoption turn out to be land size, primary
level of education, rent ofmachine and training for themachine. The likelihood of a farmer being
an adopter increases by 2% if there is a unit increase in the agricultural landholding size. This
further suggests that higher the landholding size, higher is the probability of adoption of the
technology. Primary level of education increases the probability of being an adopter by 45%.
This means that the primary level of literacy is an important factor that aids in determining the
adoption of the LLL technology. Lastly, inappropriate training for LLL and higher rent of the
LLL machine act as an obstacle in the adoption.

The PSM results satisfy the balancing property since there is a considerable overlap
between the treated and untreated observations. Further, we also observe that there is a
substantial reduction in mean bias and median bias after matching (Table A1). Figure A1
depicting common support is attached in the Appendix. Therefore, the PSM results suggest
that adopters of LLL gain by INR3,725 and 0.33 tons/ha in comparison to the non-adopters of
LLL. Further, the CEM results show an increase of INR4,834 in the net income of LLL
adopters in comparison to non-LLL adopters. Similarly, for crop yield, the PSM and CEM
results exhibit an increase of 0.33 and 0.68 tons/ha, respectively for LLL adopters in
comparison to non-LLL adopters. Both the algorithms mention that adopters had higher net
income and yield than non-adopters. PSMundertakes the presence endogeneity in the form of
observable factors, while the unobservable factors are not noticed such as information
asymmetries, skill levels, etc., which justifies the application of the ESRmethod to account for
unobserved endogeneity present in the data. The ESR results indicate a net rise of 0.91 tons/
ha rise in crop productivity and INR11,386 in the income of the farmers. In case of yield,
agricultural land, primary level of education, livestock and pump set ownership, and training
and rent of LLLmachine have a significant and positive impact for the adopters. Similarly, for
net income, agricultural landholding, primary education, livestock and pump set possession,
and training and rent of machine have a positive and significant impact for the adopters.

It is observed from the expert consultation during the survey that the plot size of at least
0.5 acre is necessary to operate LLL machines effectively, and hence, this can be technically
feasible for the small farmer’s land as well, provided they are aware about benefits of this
technology and are alsowilling to adopt that technology in their land. In the above discussion,
we have also explained that the probability of LLL adoption increases more if farmers receive
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training than the size of land they hold. Apart from this technical feasibility, economic
feasibility to the small farmers is also important for upscaling this technology. In this context,
rent of the machine is instrumental; higher rent cannot be afforded by the small andmarginal
farmers. On the other hand, increase in demand for leveling will increase the economic
viability for the farmers or the custom hiring centers to make investment on the LLL
machines. Therefore, policy and institutional arrangement is essential to increase the demand
for leveling, which in turn enables the customs hiring business in the Karnataka state. Hence,
subsidized rates should be fixed to increase its accessibility.

6. Conclusion and policy implications
Drought is a most frequently observed climate extreme event in the semi-arid region, which
causes loss in the crop yield and net income of the farmers. As argued by various agricultural
scientists, adoption of climate smart technology to reduce crop and income loss of the farmers
is an essential step. LLL is one such climate-smart technology that has potential to adapt with
the climate variability because of the efficient use of water, reduce cost of cultivation and
minimize risk of crop yield and income loss to the farmers. However, limited evidence are
available to argue the effectiveness of LLL technology in reducing crop loss due to drought
event in the semi-arid region. Therefore, this study fills this knowledge gap by providing
empirical evidence on the effectiveness of LLL under drought situation in the selected study
region within the semi-arid region of the state of Karnataka in India.

The results from this study clearly demonstrate that crop yield in laser land-leveled plot is
higher than the non-LLL plot even in the drought year. Moreover, LLL reduces the yield gap
across the farmers who have adopted LLL. On the other hand, LLL reduces costs incurred by
farmers and increases the yield and net income. The cost of owning an LLL machine
(excluding a tractor) is around INR1.5 lakhs, which imposes financial burden on small and
marginal landowners, but the life span of laser-leveled plot is three years, which reduces the
cost of leveling the farmlands for three consecutive years. A cost–benefit ratio between the
adopters and non-adopters of LLL is estimated as 1.72 and 1.56, respectively, for paddy
cultivation in the study area. This implies an INR100 investment in agriculture, including
LLL technology, will yield the net revenue of INR172 as compared to return of INR156 when
the same amount ofmoney has been investedwithout LLL technology. Therefore, adopters of
the LLL technology will gain 16% more return than non-adopters even in the year when the
study area observed long dry spell during the paddy growing season.

Despite higher return from the adoption of the LLL technology, the existing constraints
are limiting adoption of this technology to a greater scale in the study area. Inadequate
training facilities, shortage of machine supply and lack of operating skill for the machine,
inadequate irrigation sources, lack of improved seeds and problem with weeding are few
important constraints that were reported by the farmers during the survey. Therefore,
strengthening agricultural extension services to increase awareness about the LLL among
the farmers along with accessibility of machines should be given priority by the government
to upscale the LLL technology in the region. Further, the operating skill of the LLLmachine is
a crucial factor to derive full benefit of the technology. Therefore, skill development training
would be essential to increase accessibility of the machine by the farmers. Moreover, further
research and development is needed to enhance the crop productivity and income of the
farmers using LLL. The public sector can collaborate with private institutions in increasing
the availability of LLL machinery and improved seeds. Emphasis should be placed on
strengthening financing options for farmers, promoting green agriculture, disseminating
technology and decentralizing institutions for efficient implementation and execution of the
programs. Finally, demonstrations can be given by the scientists to the farmers on their fields
to make the farmers tech-friendly and promote adoption.
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Notes

1. Crop productivity is the total production divided by the total area cultivated.

2. Net income is calculated as the difference between the total revenue earned minus total cost incurred
by the farmers. Total revenue is the product of the total quantity of commodity sold and price at
which it is sold. Total cost is the sumof different costs incurred by the farmer during crop cultivation.
The major costs considered in this study included canal water charges, electricity for irrigation,
fertilizer, seed, labour, rental of machines for ploughing and leveling, and fuel.
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Figure A1.
Common support
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Variable Matched Treated Control %bias
% reduction in

bias t p > t

Agriculture land owned
(ha)

U 10.53 5.43 46.5 93.9 5.54 0.01
M 9.49 9.80 �2.8 �0.38 0.71

Household size (number) U 6.04 6.38 �9.6 92.5 �1.19 0.24
M 5.99 5.97 0.7 0.10 0.92

Visitmade to and fromRSK U 0.26 0.16 23.6 78.5 2.87 0.01
M 0.25 0.23 5.1 0.61 0.54

Adult male member in
farming

U 1.77 1.92 �15.1 96.8 �1.85 0.06
M 1.76 1.75 0.5 0.07 0.95

Education (base: illiterate)
Primary U 0.38 0.25 28.4 73.5 3.46 0.01

M 0.38 0.42 �7.5 �0.91 0.36
Secondary U 0.22 0.21 4.3 �10.4 0.52 0.60

M 0.22 0.24 �4.7 �0.59 0.56
Higher secondary and
above

U 0.16 0.16 �0.7 �343.8 �0.08 0.93

M 0.16 0.15 3.1 0.39 0.69

Assets (Yes 5 1, No 5 0)
Crop loan U 0.66 0.69 �7.5 50.1 �0.91 0.36

M 0.66 0.64 3.7 0.47 0.64
Own livestock U 0.66 0.55 22.8 93.5 2.80 0.01

M 0.65 0.64 1.5 0.19 0.85
Own pump set U 0.57 0.37 40.9 88.7 5.01 0.01

M 0.57 0.59 �4.6 �0.58 0.56
Own tractor U 0.55 0.41 28.2 45.0 3.45 0.01

M 0.54 0.62 �15.5 �1.99 0.05

Constraints in adopting LLL
Machine supply U 0.72 0.43 61.5 75.7 7.56 0.01

M 0.72 0.79 �15.0 �2.11 0.04
Training U 0.83 0.47 81.5 79.8 10.10 0.01

M 0.83 0.76 16.5 2.30 0.02
Rent of machine U 0.91 0.55 90.3 91.0 11.31 0.01

M 0.91 0.95 �8.1 �1.68 0.09
Irrigation facility U 0.48 0.29 38.6 92.8 4.70 0.01

M 0.49 0.47 2.8 0.34 0.73

Note(s): U stands for unmatched and M stands for matched
Source(s): Authors’ estimation based on IFPRI-GoK Survey, 2018–2019

Table A1.
T-test for quality of

means of each variable
before and after match
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Variables L1 values Net income (INR) Yield (tons/ha)

LLL user (Yes 5 1, No 5 0) � 4,834.571** 0.685***
(2,149.541) (0.119)

Agriculture land owned (ha) 0.211 �168.022 �0.004
(131.442) (0.006)

Household size (number) 0.099 �359.696 0.024
(514.448) (0.033)

Visit made to and from RSK 0.001 �12,379.588*** �0.231
(3,380.612) (0.204)

Adult male members in farming 0.001 1,574.156 0.120
(2,146.442) (0.104)

Education (base: illiterate)
Primary 0.001 5,076.552 0.335**

(3,559.385) (0.166)
Secondary 0.001 2,191.317 0.347

(5,077.789) (0.319)
Higher secondary and above 0.001 �7,332.530 �0.166

(6,941.623) (0.300)

Assets
Crop loan (Yes 5 1, No 5 0) 0.001 3,217.311 0.270*

(3,351.579) (0.141)
Own livestock (Yes 5 1, No 5 0) 0.001 �485.833 �0.073

(2,383.756) (0.120)
Own pump set (Yes 5 1, No 5 0) 0.001 3,779.156 0.109

(3,295.495) (0.170)
Own tractor (Yes 5 1, No 5 0) 0.001 �341.022 0.123

(3,405.071) (0.185)

Constraints to adopting LLL
Machine supply 0.001 6,454.129* 0.168

(3,628.132) (0.217)
Training 0.001 420.241 �0.321

(4,862.904) (0.416)
Irrigation facility 0.001 �5,330.024 �0.085

(3,289.905) (0.178)
Constant 27,445.165*** 3.685***

(5,137.276) (0.459)
Observations 94 94
R-squared 0.317 0.420

Source(s): Authors’ estimation based on IFPRI-GoK Survey, 2018–2019; robust standard errors in the
parenthesis; ***p < 0.01, **p < 0.05, *p < 0.1

Table A2.
Estimates from
CEM model
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Treatment 5 1
(farmers in treatment

group)
Control5 0 (farmers
in control group)

Treatment 5 1,
other 5 0

Ordinary least
squares

Constant 1.709*** (0.070) 1.393*** (0.045) �0.721*** (0.351) 7.383*** (0.053)
LLL user
(Yes 5 1,
No 5 0)

� � � 0.082** (0.030)

Log agriculture
land owned (ha)

�0.006 (0.011) 0.003 (0.014) 0.318*** (0.069) 0.013 (0.009)

Log household
size (number)

�0.005 (0.022) �0.019 (0.028) �0.163 (0.150) �0.017 (0.024)

Adult male
member in
farming

0.012 (0.011) 0.017 (0.012) �0.115 (0.071) 0.009* (0.004)

Visit made to
and from RSK

�0.004 (0.020) �0.002 (0.029) 0.185 (0.140) �0.003 (0.010)

Education (base: illiterate)
Primary �0.004 (0.024) 0.008 (0.026) 0.258* (0.153) 0.015 (0.017)
Secondary 0.018 (0.026) 0.061** (0.029) 0.013 (0.168) 0.041 (0.022)
Higher
secondary and
above

0.028 (0.029) �0.012 (0.030) �0.072 (0.187) 0.008 (0.019)

Assets
Crop loan
(Yes 5 1,
No 5 0)

0.036* (0.019) �0.007 (0.022) �0.212* (0.128) 0.008 (0.021)

Own livestock
(Yes 5 1,
No 5 0)

�0.011 (0.026) 0.004 (0.021) 0.234* (0.122) �0.003 (0.015)

Own pump set
(Yes 5 1,
No 5 0)

�0.035* (0.019) 0.011 (0.022) 0.257** (0.121) �0.001 (0.024)

Own tractor
(Yes 5 1,
No 5 0)

0.007 (0.021) 0.042* (0.023) �0.018 (0.138) 0.023 (0.012)

Constraints to adopting LLL
Machine supply 0.032 (0.020) �0.007 (0.033) 0.046 (0.140) 0.027 (0.018)
Training �0.034 (0.025) �0.031 (0.039) 0.465*** (0.166) �0.017 (0.032)
Rent of machine �0.066* (0.036) 0.019 (0.042) 0.891*** (0.193) 0.009 (0.035)
Irrigation
facility

�0.028 (0.018) �0.008 (0.027) �0.016 (0.130) �0.015 (0.017)

IV � � �0.758*** (0.352) �
Lnσ1 �1.801*** (0.076)
ρ1 �1.109*** (0.282)
Lnσ2 �1.841*** (0.058)
ρ2 �0.245 (0.324)
Observations 600 600 600 600

Source(s): Authors’ estimation based on IFPRI-GoK Survey, 2018–2019; robust standard error in the
parenthesis; ***p < 0.01, **p < 0.05, *p < 0.1

Table A3.
Drivers of yield (tons/

ha), ESR model
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Treatment 5 1
(farmers in treatment

group)
Control5 0 (farmers
in control group)

Treatment 5 1,
other 5 0

Ordinary least
squares

Constant 10.810*** (0.100) 10.420*** (0.114) �0.613* (0.341) 10.389*** (0.112)
LLL user
(Yes 5 1,
No 5 0)

� � � 0.169** (0.048)

Log agriculture
land owned

�0.020 (0.017) 0.016 (0.033) 0.303*** (0.070) 0.023** (0.008)

Log household
size

0.004 (0.035) �0.136* (0.072) �0.228 (0.148) �0.065 (0.071)

Adult male
member in
farming

0.016 (0.018) 0.057* (0.031) �0.095 (0.073) 0.022 (0.017)

Visit made to
and from RSK

�0.057* (0.031) �0.189*** (0.072) 0.181 (0.140) �0.085* (0.035)

Education (base: illiterate)
Primary 0.031 (0.036) �0.016 (0.066) 0.305** (0.152) 0.029 (0.051)
Secondary 0.055 (0.040) �0.024 (0.073) 0.041 (0.170) 0.022 (0.082)
Higher
secondary and
above

0.085* (0.045) �0.042 (0.076) �0.061 (0.187) 0.029 (0.038)

Assets (Yes 5 1, No 5 0)
Crop loan 0.076** (0.029) 0.036 (0.056) �0.210 (0.128) 0.037 (0.054)
Own livestock �0.065** (0.029) �0.105** (0.053) 0.243** (0.121) �0.077 (0.034)
Own pump set �0.039 (0.030) �0.125** (0.056) 0.251** (0.121) �0.059** (0.012)
Own tractor 0.030 (0.033) 0.078 (0.059) 0.024 (0.135) 0.053 (0.028)

Constraints to adopting LLL
Machine
supply

�0.003 (0.031) �0.023 (0.084) 0.091 (0.140) 0.008 (0.005)

Training �0.072* (0.040) �0.062 (0.097) 0.392** (0.167) �0.024*** (0.007)
Rent of
machine

�0.087 (0.053) 0.163 (0.102) 0.971*** (0.194) 0.092*** (0.012)

Irrigation
facility

�0.042 (0.029) �0.098 (0.069) 0.006 (0.129) �0.058 (0.030)

IV � � �0.825*** (0.236) �
Lnσ1 �1.351*** (0.070)
ρ1 �1.165*** (0.252)
Lnσ2 �0.906*** (0.053)
ρ2 �0.267 (0.234)
Observations 600 600 600 600

Source: Authors’ estimation based on IFPRI-GoK Survey, 2018–2019; robust standard error in the parenthesis;
***p < 0.01, **p < 0.05, *p < 0.1

Table A4.
Drivers of net income
(INR), ESR model
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Parameter estimates

Model 1 Model 2 Model 3
LLL adopter (Yes 5 1,

No 5 0)
Rice yield for non-LLL

adopters
Net income for non-LLL

adopters

Access to canal
irrigation

�1.075*** 0.006 �0.272

Constant 1.100*** 1.424*** 10.642***
Wald test on IV Chi (2) 5 50.05 F-stat 5 3.75 F-stat 5 2.92
Observations 604 275 275

Note(s): *** p < 0.01

Table A5.
Parameter estimates –

validity test of the
selected instrument
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